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Abstract

A major challenge facing outdoor navigation is the localization of a mobile ro-
bot as it traverses a particular terrain. Inaccuracies in dead-reckoning and the loss of
global positioning information (GPS) often lead to unacceptable uncertainty in vehicle
position. We propose a localization algorithm that utilizes cost-based registration and
particle filtering techniques to localize a robot in the absence of GPS. We use vehicle
sensor data to provide terrain information similar to that stored in an overhead satellite
map. This raw sensor data is converted to mobility costs to normalize for perspective
disparities and then matched against overhead cost maps. Cost-based registration is
particularly suited for localization in the navigation domain because these normalized
costs are directly used for path selection. To improve the robustness of the algorithm,
we use particle filtering to handle multi-modal distributions. Results of our algorithm
applied to real field data from a mobile robot show higher localization certainty com-
pared to that of dead-reckoning alone.
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1 Introduction

Many autonomous ground vehicles operating outdoors use an aerial map to navigate
from one point to the next. In order to ensure little deviation from this path, ground
vehicles need to know their exact location during their traversal. The most common
way to determine this position is from the Global Positioning System (GPS). However,
GPS is sometimes unavailable due to occlusion, technical failures or jamming. One
contingency to GPS is dead-reckoning (i.e., inertial sensing plus odometry) a method
prone to increasing error over distance and time. In these cases, prior knowledge of the
environment can be very useful in correcting odometry errors to more accurately locate
the robot.

Prior knowledge is largely available in the form of overhead maps such as satellite
imagery for different regions of the world and is reasonably easy to obtain. While the
resolution of these maps may be coarse, the maps typically give a comprehensive view
of an area. Additionally, the vehicle usually possesses a perception system that can
sense the terrain around the robot to produce a more detailed local map. A natural
method for registration in localization algorithms compares the global and local maps
to find data matches at particular positions.

Current localization techniques typically employ visual landmarks as markers to
align two sets of data [1] [2]. Literature exists that cite different methods of finding
and extracting distinguishing features to be landmarks such as [3] [4]. However, the
data from the overhead imagery and local sensors may differ greatly due to perspective
differences. For instance, tree trunks are visible when viewed from the local perspective
while only the canopies are visible from above making individual feature comparisons
difficult. These data inconsistencies drastically complicate feature tracking in outdoor
environments. In constrast, we use mobility costs. Mobility costs are derived from
terrain features and specify the difficulty of traversing a particular patch of terrain.
Thus, mobility cost maps minimize reliance on a single landmark for localization and
help reduce perspective effects by capturing the quality of the environment rather than
its features or characteristics.

In order to localize based on cost map matches, we use a particle filter to manage es-
timates of the robot’s state. Current methods for state estimation include Kalman filters
and patrticle filters [5]. Recent localization algorithms have employed these two tech-
nigues for position estimation such as [6] [7]. Kalman filters assume the belief state is
unimodal, typically a Gaussian distribution, which may not accurately reflect the par-
ticular state distribution being modelled [8]. Alternatively, a particle filter, which is a
sample-based estimation Monte Carlo technique, can handle multi-modal distributions
by maintaining competing hypotheses for the robot position [9]. Finally, particle filters
are generally more space efficient because they sample a space instead of modelling
the entire space.

Our contribution consists of applying a well-established estimation method to over-
head and ground mobility cost maps to localize an outdoor mobile robot. While particle
filters and cost maps have each been used for localization, the combination of the two
has not been tested. We show that despite cost discrepancies, a particle filter combined
with a simple similarity metric demonstrates promising results for localization. We
compare our method to pure dead-reckoning on a test course where the robot traveled
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Figure 1: lllustration of our approach

over 3000m.

This paper is organized in a top-down manner. We present an overview of the
approach in Section Il. We show more details and examples of the different algorithm
components in Section Ill. We illustrate and analyze results conducted on data collected
from field tests in Section IV. Finally we present our conclusions in Section V.

2 Approach

Our approach localizes a mobile robot using cost-based registration to estimate the ro-
bot’s position. Our approach process is illustrated in Figure 1. We used commercially

available satellite imagery with a 30cm resolution as the prior data. The local data was

gathered using the perception system on the robot. To factor out perspective differ-

ences, we transformed the two data sets into mobility cost maps. During each cycle
of a particle filter, we register the two maps to produce a state estimate for the vehi-

cle. While the conversion to cost maps is not the focus of this paper, we explain the

conversion process to illustrate the registration process.

We process raw image and range data from terrain features such as vegetation,
ground, and rocks into a single mobility value [10]. To support a grid-based repre-
sentation, the maps are divided into grid cells and this conversion from raw features
to a combined mobility cost occurs for each grid cell in both the overhead and local
maps. The overhead map costs are made consistent with the ground costs using self-
supervised learning [11]. However, this process cannot remove all the inconsistencies
between the two cost maps generated by occlusion (the obstruction of certain features
by other features) and aliasing (the mapping of multiple features to a single object).
Aliasing effects result in multi-modal position matches where one item in the local
map matches more than one item in the global map. We used a patrticle filter because
of its ability to handle the multi-modal nature of the map matches.

For position estimation, the particle filter keeps a sample of particles which denote
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Figure 2: This example captures the capability of the partitter in maintaining
multiple hypotheses. At time stepthe global map (GM) contains three features that
match the local map (LM) resulting in the distribution of the particles shown in the
bottom figure. We assume the vehicle is centered in the local map. After it moves at
time stept + 1, the vehicle collects more information of the scene, updates the local
map (LM), and the particle distribution shifts to favor the bottom right location.

(z,y) vehicle positions. At each cycle, the algorithm operates in two main steps: pre-
diction and correction. The prediction step estimates the motion of the particles using
the vehicle’s motion model. We used dead-reckoning as our motion model defined as
commanded vehicle movement plus Gaussian noise. With pure dead-reckoning, the
position error of the vehicle grows indefinitely within the Gaussian noise bounds.

The correction step decreases the effects of the motion noise by adjusting the parti-
cle weights using registration. The algorithm calculates the quality of matches using a
similarity measure. Centering the local cost map at each particle position, the similar-
ity metric returns the value of the match at the specific location. This value determines
the removal of certain particles and the retainment of others. In this manner, the parti-
cle filter retains the vehicle positions with the most map matches. Figure 2 shows an
example where the particle filter first finds three matches between the global and local
maps at time stepand then reduces these three hypotheses down to one when the ve-
hicle captures more environmental information at time stepl. This technique also
helps minimize the effects of sporadic false matches because it considers the weighted
average of the samples at each comparison cycle.

Since the mobility cost map is also used for path generation, mismatches using
these maps are more significant than mismatches using another map format.



3 Algorithm Details

This section presents the details of our approach (Algorithm 1). In the algorithm,
(at,w!) represents a particle, in particular parti¢lat timet wherea’ represents the
(z,y) location andw; represents the corresponding weight. We initialize the particle
filter with M particles of equal probability at the correct vehicle location (Alg. 1 line

1). In the prediction step, the samples are projected forward in time using the motion
model (Alg. 1 line 3). In the correction step, the local mobility cost mais matched

to the overhead cost map at each particle pose and a similarity metric assigns a prob-
ability p(s¢|a?) to the match. Then the algorithm uses the registration probability to
update weights of each particle (Alg. 1 line 4). After the prediction and correction
steps, the algorithm returns the estimated position (Alg. 1 line 5-6). Finally in the re-
sampling step, if the effective sample size drops below a certain threshold, a new set of
particles is selected from the current distribution (Alg. 1 line 7¢Bjs the resampling
factor which determines this resampling threshold. Next, we will unpack each of the
four major steps individually.

Algorithm 1 Particle Filter
1 (a, wh) < (ah, 1/M)
2: for t=1to Tdo
3 al <al_,+dai_, + N(0,0%) {Prediction Step}

4w} < wj - p(s|aj) {Correction Step}

5. aft < Ezaitw“’t {Position Estimation}

6: returna¢st

7. if ESS< aM then

8: Resampldal, w?) by sampling from weight§Resampling}
9. endif

10: end for

3.0.1 Prediction Step

In the prediction step, the filter estimates the motion of the particles at every cycle using
a motion model, in this case the dead-reckoning of the vehicle. In order to accurately
simulate dead-reckoning, we add noise to the motion model to model odometry errors.
The noise is assumed to be a Normal distribution with the spread of the distribution
proportional to the distance traveled. We assume the noise distribution to have a spread
of 3 standard deviations from the mean that is equaltoof the total distance trav-
eled. For the motion noise in our experiments, we chose the standard devigtion (o
be equal to the amount the vehicle moves every cycle. We also assume that the noise
samples are independent with respect to time. Hence the predicted motion becomes
the distance traveleghi , plus a small amount of Gaussian nois&0, sai_,°) (Al-
gorithm 2). The predicted motion is independently calculated for each axis component
of the displacement.

For example, imagine the robot starts out@t0) and commands a movement of



Algorithm 2 Motion Update for time
1: for i=1to M do
2 al<adi_y+da_, + N(0, 5a§:_12)
3: end for
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Figure 3: Particle locations using only the motion modelratfte vehicle has traveled
roughly 3 km

0.5m in the x direction and).7m in the y direction. Assume that all the particles are
at (0,0). The motion model will predict that the particles moved @®db + «;,0.7 +

Bi) where q; is randomly drawn from\/(0,0.5%) and 3; is randomly drawn from
N(0,0.7%).

Fig. 3 shows the location of the set of particles after a test run using the motion
model alone. After 8000 iterations, the vehicle has traveled roughly 3 km. At the
end of the run, the particles represents a Normal distribution witloB56m, roughly
1.7% of the total travel distance. Hence, the motion model accurately estimates the
dead-reckoning error accumulated through the test run Simds approximately 5%
of 3 km.

3.0.2 Correction Step

In the correction step, the particle filter corrects the prediction using a Bayesian update
(Algorithm 3). Every cycle, new sensor data produces a new cost map. The algorithm
centers the local cost mapat every particle position on the global cost mépand
calculates the quality of the match using the sum of squared difference metric between
corresponding map ceISSEag (Alg. 3 line 2). This measurement is then converted
into a likelihood probabilityp(s;|at) by taking the fraction of the difference value
over the maximum difference valueraxSSFE (Alg. 3 line 5). Using this similarity
metric, the larger the likelihood probability, the better the match. An example of a
error distribution generated from real data is shown in Fig. 4. In this figure, there is a
clear match around (-0.4m, 1.6m) indicating the most likely vehicle position.



Figure 4. Matching positions between global and local cospsna Position
(=0.4m, 1.6m) is the best match using the sum of squared differences metric.

Algorithm 3 Sensor Update for time

1: for i=1to M do
20 SSEu < Xy (Alz,y) — S(, y))?
3: end for

4: maxSSE < max(SSE)
mawSSE—SSEa,;

5: p(stlay) <= —msem

3.0.3 Registered Position

The estimated pose or the most likely robot location is the weighted average of the
particles (1).

afSt _ Zl ’LU% ) a‘% (1)

3.0.4 Resampling Step

In the resampling step, the algorithm samples the particles based on their weights to
ensure no particle has an extremely small weight. Resampling will generate more
particles(ai, w) if w{ is large and generate fewer particlesjfis small.

In order to determine when to resample, we employ the technique of rejection con-
trol [12]. At every iteration, the number of particles with weight close to zero is
calculated using a heuristic called the effective sample size:

m

ESS; = ———
T+ 2y

)

The effective sample size, which describes the number of independent samples, is
calculated from the coefficent of variation of the particles:



2, — IE((Z)) 3)

During tests, we use a resampling factoy 6 0.1 to determine when resampling
should occur. If the effective sample size is higher than the predetermined threshold,
then the particles and their weights are maintained through the next iteration (Fig. 5).
If the effective sample size is lower than the checkpoint threshold, resampling is per-
formed. For resampling, we use the select-with-replacement algorithm that randomly
samples the original particles based on their weights resulting in a subset of particles
with the highest likelihood values (Fig. 6). Finally the weights are normalized to be
equal for all the particles. In tests, we chose the subset size to be 10% of the original
set size.

= w3 3% B ® ¥ B . 40 4 42
x(m)

Figure 5: Before resampling: Sensor Figure 6: After resampling: Resam-
update increases the weights of certainpling retains the particles with higher
particles while lowering the weights of Weights and removes particles with
others lower weights

Figure 7: Crusher hybrid electric vehicle used in field tests



Figure 8: A priori cost map at 30cm resolution with a size of @7dy 806m. The
black line represents the vehicle’s path through the terrain.

4 Reaults

The robot used for field testing was a large, six-wheeled vehicle equipped with laser
rangefinders and cameras for on-board perception (Fig. 7). To test the algorithm,
we used data collected from field tests conducted on off-road terrain containing an
assortment of vegetation, slopes, ditches, trees, and rocks. This data also included the
true vehicle location collected using GPS. A path planner used the cost maps generated
from overhead and local data to find the lowest cost route through the terrain.

The map cost values range franto 65535 with 0 being unknown an@5535 being
completely blocked. Lower cost indicate more traversable map cells. Because the
on-board sensors and overhead mapping process differ significantly in data resolution
and occlusion properties, the extreme cost values (i.e., 0 and 65535) are discarded to
facilitate better matching.

Fig. 8 shows the area that the robot traversed. It contains both open areas with few
terrain features and dense areas with many more features. We tested the localization
algorithm in simulation on this area by ignoring the GPS information. We ran the
experiment on the tree-covered portion of the terrain, since a vehicle is most likely
to lose GPS in these areas; however, these areas are also likely to have unique cost
features for matching.

During testing, the robot generated local maps with a 20cm resolution and a size
of 24m by 24m. The robot was centered on each of the maps. The global map had a
30cm resolution and was 974m by 806m in size. We initialized the algorithm with 484
particles at the correct starting pose. We assumed that before the robot traveled into the
test region, GPS was available and position was known. Once the vehicle entered the
region, GPS became unavailable. In the map, this region starts at the upper left hand



side and continues down through the more feature-rich terdapicted by the black
path. The localization algorithm was invoked once per meter of robot travel. During
the entire test run, the robot traveled approximatey63 km in the x direction and
2.072 km in the y direction giving a total distance 8068 km.

Fig. 9 shows the Euclidean distance between the estimated pose (producted from
simulated experiments) and the correct pose (collected from the dataset) at each frame.
While some frames benefit from registration, for other frames, localization errors are
high. The estimated position deviates as little as 1m and as much as 45m from the
true position of the robot (Fig. 10). One reason is due to ambigious matches in the
registration process particularly when the likelihood probability distribution appears
to be multi-modal. These ambiguities or aliasing effects lead to several high scor-
ing matches between the sensor and overhead data as opposed to just one. In frames
containing the aliasing effects, the algorithm fails to choose the correct location. An
instance of an aliasing effect occurs around frame 6000 where the scene is very sparse
with few features against which to register. The graph of the position matches indicate
several mismatches (Fig. 11). The patrticle filter could not recover from the mismatches
because the vehicle stayed in the open area for almost 200 cycles before reaching a re-
gion with more distinct features. One way to solve this problem is to detect when the
distribution is multi-modal, select the best position using a heuristic, and renormalize
the particles based on the position selected. This method will mitigate aliasing effects
by removing the ambiguities from the data.

Localization errors also occur because of perspective effects and occlusion that are
not completely removed by the cost conversion. For instance, the global and local
maps at frame 4700 are shown in Fig. 13. While a high cost feature appears in the
overhead map (circled part), only a portion of the feature appear in the sensor map.
The remainder of the feature is occluded making it difficult to match the data exactly
due to the missing part. This results in the registration returning an incorrect match.
Whereas the global and local data should match at the center of the frame, the best
match using sum of squared difference at positions within a 10m by 10m square around
the true pose is at positigism, —4m), 6.7 meters off (Fig. 12). However the particle
filter recovers from this mismatch because the large weights for the correct position
offset the single mismatch. One way of further removing occlusion effects during the
cost conversion process is to only use cost features that can be measured easily in both
overhead and sensor data. For instance, features such as trees would be disregarded
due to potentially large perspective differences.

Fig. 14 shows the position distributions between dead-reckoning plus registration
and dead-reckoning alone at the end of the test. While the dead-reckoning distribution
contains no bhias, the standard deviation of the distribution is fairly large at 56.7m. On
the other hand, the standard deviation of the localization distribution is much smaller,
at 4.8m. The two standard deviations indicate that the uncertainty using only dead-
reckoning is greater than the uncertainty using dead-reckoning plus registration. In
other words, dead-reckoning errors can grow up to 156m due to Gaussian noise. How-
ever, incorporating registration pushes the estimated vehicle position to be 35m away
from the correct position. This result arises because of the high number of map mis-
matches that occur in the second half of the run. In this comparison, dead-reckoning
possesses zero bias because it is produced from simulation while the registration re-
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Figure 9: Registration error when compared to GPS grounHd &iuvery frame

sults were obtained through experiments and therefore subject to bias due to position
mismatches.

One way to interpret the results is to use risk analysis to find the amount of risk
involved in each method. We consider risk as a weighted mean of a particular loss
function:

risk; = EiL(ai) wé 4)

For instance, we analyzed the results using a popular loss function, the quadratic
function L(z) = (a! — a¢*")%2. We chose this because we wanted to penalize more
for uncertainty in the estimate. Using the particles and their weights at the completion
of the test run, the risk calculated for the localization resultd &3.5 while the risk
for dead-reckoning i80688.01. Thus using this particular loss function, pure dead-
reckoning is more than twice as risky as cost-based registration.

5 Conclusion

When GPS is absent, relying on dead-reckoning alone can be risky because the robot
can become lost in an environment due to error accumulation. Incorporating environ-
mental information to help track the position of a vehicle can be very useful in robot
localization. In this paper, we proposed a particle filter approach that uses mobility
cost maps to address the position tracking problem. However two main obstacles to
perfect cost-based registration are aliasing and occlusion effects. Despite these issues,
sample-based localization produces a position distribution with a much smaller loss
when compared to the distribution of pure dead-reckoning. Depending on the loss
function used to analyze the risk of each approach, localization via registration may
perform better. Therefore, cost-based registration for robot localization is a promising
method for position tracking.

10
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Figure 13: The bottom left cost map gives the overhead vievwhefdarea at frame
4700. The bottom right cost map gives a ground view of the same area. The two
circles indicate a feature that shows up fully in the overhead view, but is occluded in
the ground view. Lighter colors indicate higher cost.
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